%0 journal article %@ 0933-5137 %A Amancio, S., dos Santos, J. %D 2008 %J Materialwissenschaft und Werkstofftechnik %N 11 %P 799-805 %R doi:10.1002/mawe.200800369 %T Entwicklung des Reibnietens als neues Fuegeverfahren fuer Kunststoff und Leichtbaulegierungen - Development of FricRiveting as a new joining technique for polymer and lightweight alloys %U https://doi.org/10.1002/mawe.200800369 11 %X The increasing demand on environmental consciousness, cost savings and high performance end products has been guiding scientists and engineers to a constant development of new materials and technologies. This class of lightweight structures are specially used in industrial fields such as transportation and modern civil engineering. Currently available joining methods for polymer-metal structures (adhesive bonding and mechanical fastening) are usually application-specific, presenting high operational costs, limited mechanical performance or are not environmental friendly. A new Friction Riveting technique for polymeric-metallic joints was developed, demonstrated and characterized in this work, as an alternative, reliable, environmental compatible and economically viable spot joining process. In the simplest process variant a rotating cylindrical metallic rivet is inserted in one or more thermoplastic base plates. The high rotation speed and pressure increase friction and heat is generated. When the preset time is achieved the temperature highly increases and the rivet tip plasticizes. At this point rotation is decelerated and the axial pressure increased, so the plasticized rivet tip becomes deformed; after cooling it becomes anchored in the polymeric base plate. In this work case-study joints on commercially available polyetherimide (PEI) and aluminium 2024-T351 (Al-Cu-Mg alloy) were chosen for demonstrating proposed theories and mechanisms of FricRiveting. Sound friction riveted point-on-plate and single-rivet overlap joints with elevated joint efficiencies in terms of base materials strength were obtained (tensile joint efficiencies of about 97 % of the rivet strength and shear joint efficiencies of about 70 % of the polymer strength) through tensile and lap shear testing at room temperature. Finally, the microstructural changes and properties were described for this case-study joint. The feasibility of FricRiveting was demonstrated in this work by the presented technical and scientific results. From this work it can be suggested that FricRiveting has the potential to be established as a reliable, simple, cost effective and environmental friendly joining technique for polymer-metal components.